Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Biosens Bioelectron ; 237: 115439, 2023 May 27.
Article in English | MEDLINE | ID: covidwho-2327927

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.

2.
Brain Hemorrhages ; 2(2): 76-83, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-2325680

ABSTRACT

COVID-19 patients have presented with a wide range of neurological disorders, among which stroke is the most devastating. We have reviewed current studies, case series, and case reports with a focus on COVID-19 patients complicated with stroke, and presented the current understanding of stroke in this patient population. As evidenced by increased D-dimer, fibrinogen, factor VIII and von Willebrand factor, SARS-CoV-2 infection induces coagulopathy, disrupts endothelial function, and promotes hypercoagulative state. Collectively, it predisposes patients to cerebrovascular events. Additionally, due to the unprecedented strain on the healthcare system, stroke care has been inevitably compromised. The underlying mechanism between COVID-19 and stroke warrants further study, so does the development of an effective therapeutic or preventive intervention.

3.
Process Biochem ; 100: 237-244, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2290109

ABSTRACT

Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious diseases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research domains for future.

4.
J Med Virol ; 95(2): e28440, 2023 02.
Article in English | MEDLINE | ID: covidwho-2268814

ABSTRACT

Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Vaccines , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Antibodies, Viral , Spike Glycoprotein, Coronavirus
5.
FEBS Open Bio ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2234968

ABSTRACT

There are many scientific reports on the interaction of the SARS-CoV-2 virus S protein (and its RBD) with the human ACE2 receptor protein. However, there are no reliable data on how this interaction differs from the interaction of the receptor binding domain of SARS-CoV-1 with ACE2, in terms of binding strength and changes in reaction enthalpy and entropy. Our studies have revealed these differences as well as the impact of zinc ions on this interaction. Intriguingly, the binding affinity of both RBDs (of SARS-CoV-1 and of SARS-CoV-2) to the ACE2 receptor protein is almost identical; however, there are some differences in the entropic and enthalpic contributions to these interactions.

6.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L413-L432, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2223802

ABSTRACT

The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.


Subject(s)
COVID-19 , Animals , Humans , Rats , Hyaluronic Acid , Pandemics , Peptidyl-Dipeptidase A/metabolism , Proteome , Proteomics , RNA, Viral , SARS-CoV-2/metabolism
7.
Molecules ; 28(3)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2200549

ABSTRACT

During the past three decades, humans have been confronted with different new coronavirus outbreaks. Since the end of the year 2019, COVID-19 threatens the world as a rapidly spreading infectious disease. For this work, we targeted the non-structural protein 16 (nsp16) as a key protein of SARS-CoV-2, SARS-CoV-1 and MERS-CoV to develop broad-spectrum inhibitors of nsp16. Computational methods were used to filter candidates from a natural product-based library of 224,205 compounds obtained from the ZINC database. The binding of the candidates to nsp16 was assessed using virtual screening with VINA LC, and molecular docking with AutoDock 4.2.6. The top 9 compounds were bound to the nsp16 protein of SARS-CoV-2, SARS-CoV-1, and MERS-CoV with the lowest binding energies (LBEs) in the range of -9.0 to -13.0 kcal with VINA LC. The AutoDock-based LBEs for nsp16 of SARS-CoV-2 ranged from -11.42 to -16.11 kcal/mol with predicted inhibition constants (pKi) from 0.002 to 4.51 nM, the natural substrate S-adenosyl methionine (SAM) was used as control. In silico results were verified by microscale thermophoresis as in vitro assay. The candidates were investigated further for their cytotoxicity in normal MRC-5 lung fibroblasts to determine their therapeutic indices. Here, the IC50 values of all three compounds were >10 µM. In summary, we identified three novel SARS-CoV-2 inhibitors, two of which showed broad-spectrum activity to nsp16 in SARS-CoV-2, SARS-CoV-1, and MERS-CoV. All three compounds are coumarin derivatives that contain chromen-2-one in their scaffolds.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Molecular Docking Simulation , S-Adenosylmethionine
8.
Front Chem ; 10: 1014663, 2022.
Article in English | MEDLINE | ID: covidwho-2154652

ABSTRACT

COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.

9.
Front Med (Lausanne) ; 9: 1002187, 2022.
Article in English | MEDLINE | ID: covidwho-2119719

ABSTRACT

While worldwide efforts for improving COVID-19 vaccines are currently considered a top priority, the role of the genetic variants responsible for virus receptor protein stability is less studied. Angiotensin-converting enzyme-2 is the primary target of the SARS-CoV-1/SARS-CoV-2 spike (S) glycoprotein, enabling entry into the human body. Here, we applied computational saturation mutagenesis approaches to determine the folding energy caused by all possible mutations in ACE2 proteins within ACE2 - SARS-CoV-1-S/ACE2 - SARS-CoV-2-S complexes. We observed ACE2 mutations at residue D350 causing the most stabilizing effects on the protein. In addition, we identified ACE2 genetic variations in African Americans (rs73635825, rs766996587, and rs780574871), Latino Americans (rs924799658), and both groups (rs4646116 and rs138390800) affecting stability in the ACE2 - SARS-CoV-2-S complex. The findings in this study may aid in targeting the design of stable neutralizing peptides for treating minority patients.

10.
Methods Mol Biol ; 2591: 171-188, 2023.
Article in English | MEDLINE | ID: covidwho-2103726

ABSTRACT

Both severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and SARS-CoV-2) encode a papain-like protease (PLpro), which plays a vital role in viral propagation. PLpro accomplishes this function by processing the viral polyproteins essential for viral replication and removing the small proteins, ubiquitin and ISG15 from the host's key immune signaling proteins, thereby preventing the host's innate immune response. Although PLpro from both SARS-CoV-1 and SARS-CoV-2 are structurally highly similar (83% sequence identity), they exhibit functional variability. Hence, to further elucidate the mechanism and aid in drug discovery efforts, the biochemical and kinetic characterization of PLpro is needed. This chapter describes step-by-step experimental procedures for evaluating PLpro activity in vitro using activity-based probes (ABPs) along with fluorescence-based substrates. Herein we describe a step-by-step experimental procedure to assess the activity of PLpro in vitro using a suite of activity-based probes (ABPs) and fluorescent substrates and how they can be applied as fast and yet sensitive methods to calculate kinetic parameters.


Subject(s)
COVID-19 , Ubiquitin , Humans , Ubiquitin/metabolism , SARS-CoV-2/genetics , Coronavirus Papain-Like Proteases , Papain , Peptide Hydrolases/metabolism , Ubiquitins/metabolism , Cytokines/metabolism
11.
Antiviral Res ; 208: 105458, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095047

ABSTRACT

Severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) pose a threat to global public health. The 3C-like main protease (Mpro), which presents structural similarity with the active site domain of enterovirus 3C protease, is one of the best-characterized drug targets of these viruses. Here we studied the antiviral activity of the orally bioavailable enterovirus protease inhibitor AG7404 against SARS-CoV-1 and SARS-CoV-2 from a structural, biochemical, and cellular perspective, comparing it with the related molecule rupintrivir (AG7800). Crystallographic structures of AG7404 in complex with SARS-CoV-1 Mpro and SARS-CoV-2 Mpro and of rupintrivir in complex with SARS-CoV-2 Mpro were solved, revealing that all protein residues interacting with the inhibitors are conserved between the two proteins. A detailed analysis of protein-inhibitor interactions indicates that AG7404 has a better fit to the active site of the target protease than rupintrivir. This observation was further confirmed by biochemical FRET assays showing IC50 values of 47 µM and 101 µM for AG7404 and rupintrivir, respectively, in the case of SARS-CoV-2 Mpro. Equivalent IC50 values for SARS-CoV-1 also revealed greater inhibitory capacity of AG7404, with a value of 29 µM vs. 66 µM for rupintrivir. Finally, the antiviral activity of the two inhibitors against SARS-CoV-2 was confirmed in a human cell culture model of SARS-CoV-2 infection, although rupintrivir showed a higher potency and selectivity index in this assay.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
12.
EXCLI J ; 21: 1245-1272, 2022.
Article in English | MEDLINE | ID: covidwho-2072283

ABSTRACT

The severe acute respiratory syndrome (SARS-CoV, now SARS-CoV-1), middle east respiratory syndrome (MERS-CoV), Neo-CoV, and 2019 novel coronavirus (SARS-CoV-2/COVID-19) are the most notable coronaviruses, infecting the number of people worldwide by targeting the respiratory system. All these viruses are of zoonotic origin, predominantly from bats which are one of the natural reservoir hosts for coronaviruses. Thus, the major goal of our review article is to compare and contrast the characteristics and attributes of these coronaviruses. The SARS-CoV-1, MERS-CoV, and COVID-19 have many viral similarities due to their classification, they are not genetically related. COVID-19 shares approximately 79 % of its genome with SARS-CoV-1 and about 50 % with MERS-CoV. The shared receptor protein, ACE2 exhibit the most striking genetic similarities between SARS-CoV-1 and SARS-CoV-2. SARS-CoV primarily replicates in the epithelial cells of the respiratory system, but it may also affect macrophages, monocytes, activated T cells, and dendritic cells. MERS-CoV not only infects and replicates inside the epithelial and immune cells, but it may lyse them too, which is one of the common reasons for MERS's higher mortality rate. The details of infections caused by SARS-CoV-2 and lytic replication mechanisms in host cells are currently mysterious. In this review article, we will discuss the comparative highlights of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Neo-CoV, concerning their structural features, morphological characteristics, sources of virus origin and their evolutionary transitions, infection mechanism, computational study approaches, pathogenesis and their severity towards several diseases, possible therapeutic approaches, and preventive measures.

13.
Biomedicines ; 10(10)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2043577

ABSTRACT

The secretion of IgG SARS-CoV-2 antispike antibodies after vaccination with BNT162b2 and the protection represent the response of the human organism to the viral vector symptomatic infections. The aim of the present investigation was to evaluate the immune reaction in health workers of the Polyclinic of Bari to identify the relationship of antispike titers with blood type, sex, age, and comorbidities. This prospective observational study (RENAISSANCE) had as its primary endpoint the assessment of serologic response to BNT162b2 at three blood titers: the first at 60 days after the second dose (3 February 2021); the second titer at 75 days after the first titer; and the third titer at 130 days after the second titer. Out of 230 enrolled staff members, all responded excellently to the mRna Pfizer (BNT162b) vaccine. Only one patient, 40 days after the second dose (3 February 2021), was positive on the swab control performed on 15 March 2021, although completely asymptomatic, and was negative on the subsequent molecular swab performed on 30 March 2021. All the patients responded to the mRNA Pfizer (BNT162b) vaccine with an antispike IgG level above 500 BAU/mL at the first antispike protein essay (60 days after the second dose on 3 April 2021); at the second titer (75 days after the first titer on 20 June 2021), 4 (1.7% of 230 enrolled) patients showed an antispike IgG level under 500 BAU/mL; at the third titer (130 days after the second titer on 30 June 2021, which means 9 months after the second dose), 37 (16.1% of 230 enrolled) patients showed an antispike IgG level under 500 BAU/mL. The data analysis demonstrated that patients belonging to blood group 0, regardless of their rhesus factor, showed the strongest level of antibodies compared to the other groups. No dependency was found between low antibodies level and sex or age. Molecular swab controls were performed every 15th of the month continuously. However, the enrolled patients' activity was at high risk because they carried out medical activities such as dental and surgical as well with droplets of water vaporized by the effect of turbines, piezosurgery. The vaccination campaign among health workers of the Policlinico of the University of Bari "Aldo Moro" led to an excellent serological response and the complete absence of COVID-19 incident cases, so the antibody response was excellent. The COVID-19 vaccine booster shot should be administered after 9 months and not without prompt antispike titer detection to assess if any sign of waning immunity is present in that specific patient.

15.
Clin Immunol ; 244: 109103, 2022 11.
Article in English | MEDLINE | ID: covidwho-2003937

ABSTRACT

The severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) survivors are more likely to produce a potent immune response to SARS-CoV-2 after booster vaccination. We assessed humoral and T cell responses against SARS-CoV-2 in previously vaccinated SARS-CoV-1 survivors and naïve healthy individuals (NHIs) after a booster Ad5-nCoV dose. Boosted SARS-CoV-1 survivors had a high neutralization of SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, and Delta but is limited to Omicron subvariants (BA.1, BA.2, BA.2.12.1, and BA.4/BA.5). Most boosted SARS-CoV-1 survivors had robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses. While booster vaccination in NHIs elicited less or ineffective neutralization of WA1, Beta, and Delta, and none of them induced neutralizing antibodies against Omicron subvariants. However, they developed comparable SARS-CoV-2-specific T cell responses compared to boosted SARS-CoV-1 survivors. These findings suggest that boosted Ad5-nCoV would not elicit effective neutralizing antibodies against Omicron subvariants in SARS-CoV-1 survivors and NHIs but induced comparable robust T cell responses. Achieving a high antibody titer in SARS-CoV-1 survivors and NHIs is desirable to generate broad neutralization.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19 Vaccines , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Survivors
16.
Cell Rep ; 40(9): 111284, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1982703

ABSTRACT

Preexisting immunity cross-reactive to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in SARS-CoV-1 survivors suggests that a coronavirus disease 2019 vaccine may boost such preexisting cross-reactive memory T cells. We measure SARS-CoV-2 and SARS-CoV-1 spike-specific neutralizing antibody and T cell responses in a single dose of Ad5-nCoV-immunized SARS-CoV-1 survivors 6 months after vaccination. Compared with Ad5-nCoV-immunized naive healthy individuals (NHIs), vaccination of Ad5-nCoV in SARS-CoV-1 survivors boosts the antibody response against SARS-CoV-1 but induces a limited neutralizing antibody that is capable of neutralizing SARS-CoV-2 variants of concern, and nearly all serum samples lose neutralization to Omicron subvariants. Immunized SARS-CoV-1 survivors produce a T cell response to SARS-CoV-2 comparable with that of Ad5-nCoV-immunized NHIs. However, a robust cross-reactive T cell response to SARS-CoV-1 is identified in immunized SARS-CoV-1 survivors compared with Ad5-nCoV-immunized NHIs. These findings suggest that vaccination with Ad5-nCoV elicits a stronger neutralizing antibody and cross-reactive T cell responses against SARS-CoV-1 in SARS-CoV-1 survivors.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Survivors , Vaccination
17.
J King Saud Univ Sci ; 34(7): 102277, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1977532

ABSTRACT

Human ezrin protein interacts with SARS-CoV S endodomain and restricts virus fusion, entry, and early events of infection. In general, their binding strength and their structural stability determines their successful entry into the host cells. However, the binding affinity of these two endodomains with the ezrin protein has been elusive due to a paucity of knowledge on the 3D structure. This study modelled the endodomains of both SARS-CoV-1 and SARS-CoV-2 and then docked these models with human ezrin protein. This study establishes that the modelled endodomains of both SARS-CoV-1 and SARS-Cov-2 consisted of three disulphide bridges for self-stabilization. Protein-protein docking listed four salt bridges with a higher buried surface area between ezrin-SARS-CoV-1 endodomain compared to that of ezrin-SARS-CoV-2 with six salt bridges with lower buried surface area. Molecular simulation of the ezrin-SARS-CoV-1 endodomain showed better structural stability with lower Root Mean Square Deviation score compared to that of ezrin-SARS-CoV-2 endodomain due to the substitution of alanine with cysteine residue. Protein-ligand docking studies confirmed better ezrin-drug interaction for quercetin, minocycline, calcifediol, calcitriol, selamectin, ivermectin and ergocalciferol. However, protein-ligand simulation confirmed strong drug-protein interaction during simulation for all the above-listed drugs except for ergocalciferol which could not establish its interaction with the protein during simulation. Strong drug binding within the active site pocket therefore restricts the interaction of viral endodomain and simultaneously stabilizes the ezrin protein. Furthermore, the higher stability between the ezrin after their interaction with the drug moiety could restrict the virus fusion and the infection. This study provides a basis for further development of these drug molecules to clinical trials aiming to identify potential drug molecules which can treat COVID-19 infection.

18.
BMC Public Health ; 22(1): 1283, 2022 07 02.
Article in English | MEDLINE | ID: covidwho-1974134

ABSTRACT

BACKGROUND: Novel coronaviruses and influenza can cause infection, epidemics, and pandemics. Improving hand hygiene (HH) of the general public is recommended for preventing these infections. This systematic review examined the effectiveness of HH interventions for preventing transmission or acquisition of such infections in the community. METHODS: PubMed, MEDLINE, CINAHL and Web of Science databases were searched (January 2002-February 2022) for empirical studies related to HH in the general public and to the acquisition or transmission of novel coronavirus infections or influenza. Studies on healthcare staff, and with outcomes of compliance or absenteeism were excluded. Study selection, data extraction and quality assessment, using the Cochrane Effective Practice and Organization of Care risk of bias criteria or Joanna Briggs Institute Critical Appraisal checklists, were conducted by one reviewer, and double-checked by another. For intervention studies, effect estimates were calculated while the remaining studies were synthesised narratively. The protocol was pre-registered (PROSPERO 2020: CRD42020196525). RESULTS: Twenty-two studies were included. Six were intervention studies evaluating the effectiveness of HH education and provision of products, or hand washing against influenza. Only two school-based interventions showed a significant protective effect (OR: 0.64; 95% CI 0.51, 0.80 and OR: 0.40; 95% CI 0.22, 0.71), with risk of bias being high (n = 1) and unclear (n = 1). Of the 16 non-intervention studies, 13 reported the protective effect of HH against influenza, SARS or COVID-19 (P < 0.05), but risk of bias was high (n = 7), unclear (n = 5) or low (n = 1). However, evidence in relation to when, and how frequently HH should be performed was inconsistent. CONCLUSIONS: To our knowledge, this is the first systematic review of effectiveness of HH for prevention of community transmission or acquisition of respiratory viruses that have caused epidemics or pandemics, including SARS-CoV-1, SARS-CoV-2 and influenza viruses. The evidence supporting the protective effect of HH was heterogeneous and limited by methodological quality; thus, insufficient to recommend changes to current HH guidelines. Future work is required to identify in what circumstances, how frequently and what product should be used when performing HH in the community and to develop effective interventions for promoting these specific behaviours in communities during epidemics.


Subject(s)
COVID-19 , Hand Hygiene , Influenza, Human , COVID-19/prevention & control , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , SARS-CoV-2
19.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1969296

ABSTRACT

BACKGROUND: The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS: A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS: Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS: Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , RNA , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
20.
Infect Dis Rep ; 14(3): 492-500, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1969184

ABSTRACT

BACKGROUND: Coronavirus disease is a pandemic that has disrupted many human lives, threatening people's physical and mental health. Each pandemic wave struck in different ways, infectiveness-wise and mortality-wise. This investigation focuses on critically ill patients affected by the last two variants, Delta and Omicron, and aims to analyse if any difference exists between the two groups. METHODS: intensive care unit (ICU) COVID-19 consecutive admissions between 1 October 2021 and 31 March 2022 were recorded daily, and data concerning the patients' demographics, variants, main comorbidities, ICU parameters on admission, and the outcome were analysed by a univariate procedure and by a multivariate analysis. RESULTS: 65 patients were enrolled, 31 (47.69%) belonging to the Omicron versus 34 (52.31%) to the Delta group. The mortality rate was 52.94% for the Omicron group versus 41.9% for the Delta group. A univariate analysis showed that the Omicron variant was associated with total comorbidities number, Charlson Comorbidity Index (CCI), pre-existing pulmonary disease, vaccination status, and acute kidney injury (AKI). In stepwise multivariate analysis, the total number of comorbidities was positively associated with the Omicron group, while pulmonary embolism was negatively correlated with the Omicron group. CONCLUSION: Omicron appears to have lost some of the hallmarks of the Delta variant, such as endothelialitis and more limited cellular tropism when it comes to the patients in the ICU. Further studies are encouraged to explore different therapeutic approaches to treat critical patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL